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CRACKS IN SOLIDS

G. P. CHEREPANOV

Institute of Mechanical Problems, Academy of Sciences of the USSR, Moscow

Abstract-The subject of this paper is the application of basic ideas and methods of continuum mechanics to
the crack propagation processes. The crack extension is governed by an additional condition at the crack-tip.
As a consequence of this a problem of "fine" structure of the crack-tip is considered. The general additional
condition for any model of continuum is obtained making use of the energy conservation law and of the physical
concept about the fracture energy. Dynamic cracks in elastic solids and quasi-static cracks in elastic- and
rigid-plastic solids are briefly considered, as well as a problem of the crack extension in dissipating viscoelastic
bodies. The general approach is also applied to the case of fatigue and "fluctuation" cracks.

INTRODUCTION

CONSIDER a solid which has displacement discontinuity surfaces (cracks), deformations
being small. To be certain we shall confine ourselves to the case of opening mode cracks
for which the local symmetry condition holds. Single out a vicinity of an arbitrary point 0
on the smooth contour of the crack which is small compared to the characteristic linear
size of the crack. Let xyz be a cartesian coordinate system with the point 0, as a center,
y-axis being perpendicular to the crack surface and z-axis being directed along the
boundary. The vicinity under consideration ("fine" structure of the crack) is represented
on the xy-plane as an infinite domain which has a load-free cut along the negative direction
of x-axis, (Fig. 1). It is clear that the parameters describing the state of the medium in this
small vicinity are independent of z.
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Let the singular solution of the problem formulated above be determined for any
given rheological model of the body with an accuracy of one free parameter N independent
of x and y. The singular solution is certainly to satisfy a natural physical requirement of
the energy flux finiteness at the crack-tip, i.e. at the point O. We shall make a general
assumption on the existence of some physical law governing the monotonous propagation
of the crack; the latter can be written in the form of some mathematical relationship
between parameters of the medium and/or their functional time and spatial characteristics
in the small vicinity of the crack-tip (the assumption of local fracture). This trivial assump­
tion is generally accepted. Since all the parameters of the medium in the neighborhood of
the point 0 depend on N, any relationship is inevitably reduced to the following one

<PN = 0 (0.1)

where <P is a time operator specific to the given material. A solution of the operator
equation (0.1) exists and is unique due to the same assumption; it can be written in the
form

(0.2)

Here t is time, N o(t, Cl' C2 ... ) is a function (the same for the given material), C1, C2 ...

are values determined by initial data. Notice that No is also a function of regular para­
meters of state at the point 0, e.g. temperature or concentration of components for a
solid solution. The function No includes, ofcourse, some physical constants of the material
distinguishing a fracture mechanism and depending on the crack velocity.

For the particular case of brittle and quasibrittle bodies, from a generally accepted
assumption on the existence of the law which governs the crack extension and is inde­
pendent of time, one obtains the following limiting condition

N = }(c (0.3)

where }(c is a universal material constant (constant of Irwint). As N in this case one usually
takes the stress intensity factor. The condition equation (0.3) represents the basic concept
of brittle and/or quasibrittle fracture. The latter is thus not dependent on the physical
nature of fracture and is accounted for purely logical reasons.

Let us briefly recall how various authors came to this condition.
In accordance with most natural and general physical concepts by Griffith-Irwin­

Orowan to form a unit of the crack surface one must spend some energy y*' which repre­
sents a material constant (1·-3]. The mathematical formulation of these view points given
by Irwin [4,5J resolves itself into the limiting condition

2 Ey*N = - (plane stresst)
n

(0.4)
2 Ey*N = --- (plane strain)

n(l- v2
)

where E is Young's modulus, v is Poisson's ratio. Williams connected the crack extension
with the limiting radius of curvature of the crack at its tip [6J. Neuber advanced the con­
ception of the "plastic" particle, which can be reformulated as follows: the size d of the
plastic region near the end of the crack is a structure material constant [7]. Leonov and
Panasyuk accepted that on a length along the crack line prolongation the stress (Jyequals

t With the accuracy of a constant factor.
t For the plates of finite thickness y* depends on the plate thickness.



Cracks in solids 813

to the theoretical strength and the displacement v of the opposite coasts, at the point 0
equals to a material constant [8]. The stress (Jy on an interval of the length d along the crack
line prolongation as well as the value d are believed by Barenblatt to be material character­
istics [9]. McClintock assumed for the case of shear, that at an interval d ahead of the
crack-tip in the plastic region the deformation attains a limiting value [10]. For all the
cases the constants d are thought to be small in comparison with the crack length. All
the concepts mentioned above lead to the limiting condition equation (0.3) first derived
by Irwin [4, 5]. (Neuber and McClintock did not point out explicitly this condition).

1. THE LIMITING CONDITION AT THE CRACK-TIP

To find the function No theoretically, we apply the most natural and general physical
concepts about specific surface energy and/or fracture energy y*, which are analogous
to the Griffith-Irwin-Orowan concepts. By y* we shall imply the work of irreversible
deformations in the vicinity of the crack boundary which are not taken into account in
the assumed model of continuum.

Let us confine ourselves to processes with contribution by mechanical and heat energy
only. Let C be the circle of radius R with point 0 as the center (Fig. 1). The radius R is
held small as compared to the crack length, but very large in the singular problem (as the
region D was under the microscope). Let us fix the circle C and study the deformation and
fracture process of the continuum D, located inside C. Let rO be polar coordinates with
the origin at the point O.

According to the energy conservation law the power A of the external forces plus the
heat input rate Qis equal to the rate of increase of the sum of the kinetic K and intrinsic
(W + I1) energy of the body in the domain D

(1.1)

Here u, v are displacements, (Jx' (Jy, Lxy are stresses, qx' qy are components of the heat flux,
(Fx' Fy) is the volume force, p and U are the mass and intrinsic energy densities, I is the
crack extension velocity.

Convert the condition (1.1) into the more convenient form [l1J, the singular solution
at the point 0 being dependent on one free parameter N. Let the crack length I play the
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(1.2)

role of time. Then the energy conservation law can be written as

(
c5A c5Q JK OW) dN (c5A c5Q c5K oW )
c5N+ IN- c5N- oN bl=OdT+ -GJ+bf-M-ar- 2y* bN=O = O.

The factor at dN/dl in equation (1.2) equals zero because of the energy conservation
law for the fixed crack. The equation (1.2) results in the form [llJ

R L+1t
1t

[(PU +K*-pH)cos o+y(qxCOS O+qy SinB)-A*] dO = 2y*

= ~ 2[(OU)2 (OV)2]
K* 2P[ ox + ox

A* = (O"xcosO+rxySinO)~~ +(rXycosO+O"ySinO)~:

(1.3)

(1.4)

pH = fp( Fx~~+ Fy~:) dx.

Here all the values are calculated directly from the singular solution which corresponds to
the crack-tip state at the point 0, N being constant.

With the use of the local energy conservation law [12J

. . 2 . oqx oqy U'
O"xcx+O"yI;y+ rXYCXY+~+ oy P

and by means of the divergence theorem the equation (1.3) can be reduced to the follow­
ing most convenient form in which only stress and strain distributions in the neighbor­
hood of the crack boundary are present

f
+1t

R -1t [(3+K*-pH)cosO-A*] dO = 2y*

(1.5)

3 = f O"x dcx+ O"y dcy+2rxy dcxY'

It is noteworthy that mechanical and heat properties of the medium were not involved;
we used only its continuity. Evidently, the crack will not extend (i.e. [ will be zero) if the
left-hand side of the equation (1.5) will be less than 2y*.

Each term in the integrand in equation (1.5) has to have a singularity of the type of 11r
at the crack-tip, so that its contribution to the total sum would be finite. Singularities of
the order r-A. (A. > 1) are not allowed as they would cause the violation of the energy con­
servation law. Terms with weaker singularity r-A. (2 < 1) fall out, obviously.

One can demonstrate that the equation (1.5) is also valid for finite strains of the con­
tinuum, if one repeats the calculations of the work [11] and uses the local energy conserva­
tion law for the case of finite deformations [13] (3 will stand there for the strain-energy).

2. A CONSEQUENCE OF THE SECOND LAW OF THERMODYNAMICS

Among the fundamental laws only the energy conservation law was used above. The
utilization of basic laws of irreversible thermodynamics (first of all, the Gibbs equation
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and the second law of thermodynamics [14, 12]) allows one to obtain further results. Here
we shall confine ourselves to the quasistatic cracks for which K* = O. Denote

au (au) (Ou)
ox = ox e+ ox i

(2.1)

Here the index e indicates the corresponding reversible (elastic) components and the
index i marks the irreversible ones. The value Y represents the reversible part of the total
fracture energy Y* (the effective specific surface energy). For the case of crystalline and
polycrystalline bodies y seems to be equal to the true surface energy; for polymers it can
be evidently much more than the latter. The value Yi equals to the irreversible deformation
work in the surface layer; the layer thickness and the magnitude of Yi are prescribed by the
degree of adequacy of the chosen model to the properties of the real body in question.
Particularly, Yi equals zero identically if the mathematical model describes quite exactly
the mechanical and heat properties of the body. It must be emphasized that the thickness
of the above-mentioned surface layer is assumed to be zero for the present formulation
of the problem (i.e. it is considered to be small compared to R).

In the case under consideration one can write the Gibbs equation on the basis of
equations (1.3) and (2.1) as follows

R1:" [(pU-pHe)cosO-A*e]dO+TR 1:"P11cosOdO 2y. (2.2)

Here 11 is the entropy density at a point of the domain D which forms the thermo­
dynamical system under study. The absolute temperature T near the crack-tip is assumed
to be finite. Because of equations (2.2) and (1.3) the entropy flux into the D per unit time
equals to

(2.3)

The second term in the right-hand side of equation (2.31 taken with inverse sign, repre­
sents the flux of the intrinsic increment of entropy per unit time. According to the second
law of thermodynamics this flux must be non-negative.

(2.4)

Since the quantity in square brackets is the dissipation energy rate and is therefore essen­
tially positive, equation (2.4) results in the irreversibility condition for the crack extension

1>0. (2.5)

Within the framework of irreversible thermodynamics the crack expansion velocity I can
be treated as a thermodynamical flux and the term in square brackets divided by T as a
thermodynamical force.
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(2.6)

The phenomenological linearity postulate accepted in Onsager's theory [14, 12J leads
to the following expression

1= f[2Yi+R 1:" (PHiCOS8+A*i)d8J

where a is a material constant.

3. DYNAMIC CRACKS IN AN ELASTIC BODY

Consider a crack in an ideal elastic body, the contour of the crack extending at an
arbitrary velocity less than that of transverse waves. For a sufficiently small time interval
one can, clearly, always choose such a small vicinity of any fixed point 0 of the contour
that the stress and strain distribution in this vicinity would correspond to the constant
propagation velocity of the crack. It follows that the stress and strain distribution near
any point of the dynamic crack boundary at any moment will be exactly the same as for
the case of a semi-infinite straight cut moving at constant speed v ("the microscope
principle").

The stresses and displacements in the stationary dynamical problem of the theory of
elasticity for the cut y = 0, x < vt (the singular solution) can be easily found with the help
of the Galin's method [15, 16J

au N [AT cos! arc tg(K 1 tg 8) BM cos! arc tg(K2 tg 8)J
ax = Jr(MH-GT) - (cos28+Kisin28)i- + (cos28+K~ sin28)*

au N [CT sin! arc tg(K 1 tg 8) DM sin! arc tg(K2 tg 8)J
ax = Jr(MH-GT) (cos28+Kfsin28)* (cos28+K~sin28)*

N [LT cos! arc tg(K 1 tg 8) FM cos! arc tg(K2 tg 8)J
(Jx= Jr(MH-GT) - (cos28+Kfsin28)* + (cos28+K~sin20)*

N [GTCos!arctg(K1tg8) MHcos!arctg(K2tgO)J
(Jy= Jr(MH-GT) - (cos 20+Kfsin28)* + (cos20+K~sin2W-

NMT [sin! arc tg(K 1 tg 8) sin! arc tg(K2 tg 8)J
'xy = Jr(MH-GT) (COS 20+Kf sin28)* (COS20+K~ sin20)* (3.1)

where

1
D=-­

1-2v

1 / 2B = ---v(l-m )
1-2v

1 J( 1-2v 2)A- --- I---m
- 1-2v 2-2v

1 ( 1- 2v 2)C=-- I---m
1-2v 2-2v

E ( vm
2 )J( 1-2v 2)L - - 1+-- I---m

- (l+v)(I-2v) 2-2v 2-2v

E J 2
H=-F=(l+v)(I-2v) (l-m) (3.2)
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G- E(2-m
2

) )(1- 1-2vm2 )

- 2(l+v)(1-2v) 2-2v

E ( 1 2v 2)
M = (1+v)(1-2v) 1-2_2vm

E 1 2
T = (1+v)(1_2v)(1-2m )

817

(l-v)E
cf= (l +v)(l- 2v)p

E
C2 - c:-:-:--,--
2-2(1+v)p'

Following Irwin, the free parameter N will be referred to as the stress intensity factor

as e= 0, r -+ 0 (3.3)

The parameter N is a function of time, boundary conditions, body configuration, crack
speed and acceleration, coordinates of the point 0 in a fixed coordinate system; this func­
tion is determined from the solution of the problem as a whole. For the stationary problem
N is independent of time and the crack velocity. The curve y = arc tg(K tg e) in the interval
of interest, -1t <:: e <:: 1t, behaves itself roughly as shown in Fig. 2.

y

8

FIG. 2

Now we show the simplest form of the general condition equation (1.5). Making use
of the procedure of the work [l1J the following equation can be derived by varying the
contour C

as R -+ 0, aiR -+ O.

lim f+R (ay~V)l dx = ')'*
-R uX fory=6

(3.4)
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Next we calculate the following integral

(" sin! arc tg(K2 tg e) . cos! arc tg(K1tg e) de n
Jo sin e(COS2e+Ki sin2e)t(cos2e+K~sin2e)t = 2' (3.5)

By virtue of equations (3.1), (3.2) and (3.5) the condition at the crack boundary (3.4)
can be wri tten as

where
N 2 = R(m, v)<J)(m, v)Ey* (3.6)

J[ 2( 1-2v 2)J 122R(m, v) = (l-m) 1-22~m -(I- 2 m)

4
<I>(m, v) = 2 I 2 .

n(l+v)m v {1-[(1-2v)/(2-2v)]m }

The value 2N2/(ER(m, v)<I>(m, v)) has the meaning of the total energy flux into the moving
crack-tip. The condition equation (3.6) implies that the Rayleigh velocity mR, which is a
root of the equation R(mR' v) = 0, is an unattainable limit for the crack-speed because it
takes an infinitely great energy flux to the crack-tip to keep such a speed of the crack
propagation. In homogeneous materials the maximum velocity is limited even earlier by
the value m*, at which the crack-twinning occurs. The function m*(v), plotted in Fig. 3,
can be easily found by means ofequation (3.1) (see [16)). This qualitative result was obtained
first by loffe [17].

0,25

o

FIG. 3

0·50

The condition equation (3.6) plays a part of the boundary one for dynamic cracks;
given further knowledge on the dependence of y* on the crack velocity (and on time for
the non-steady case), this condition allows one to make the formulation of the problem
closed. The present state of the dynamical crack problem is outlined in the work (18) by
Irwin and Krafft.
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(5.l)

4. QUASISTATIC CRACKS IN AN ELASTIC BODY

Let a crack in a linearly elastic body extend at a velocity much lower than that ofsound,
so that inertia terms can be neglected. In this case the general condition equation (1.5)
and/or equation (3.4) results in the Irwin's condition equation (0.4) after substituting a
proper singular solution of static elasticity (see [11, 19]). According to this condition a
crack does not grow, if N < Kc ; the equation N Kc corresponds to the crack develop­
ment. Notice that Irwin obtained the limiting condition by means of the more particular
procedure applicable only for linearly elastic bodies. If the crack surface is known before­
hand, the Irwin's approach reduces the brittle-crack extension problem to the stress
analysis near the crack boundary. At present this branch of the crack theory is developed
most. There is a well selected list of works, mainly by British and American authors, in
excellent reviews by Paris and Sih [20], by Weiss and Yukawa [21], and in earlier lectures
by Sneddon [22].

5. CURVED BRITTLE CRACKS

Ifno special symmetry conditions are imposed, a brittle crack will develop on a surface,
which is to be determined in the process of solution. We shall establish an additional
condition determining the crack curvature radius at each point. Denote the parameter
of the external load as p, and the crack length, measured from a fixed point, as 1(for simpli­
city we confine ourselves to the plane problem). Let the equation of the crack line be
x = xo(l), y = yo(l). Suppose that the values of the parameters I, p and 1+ ~I, p+~p cor-

Jespond to the crack-tip state at points 0 and 0t> respectively (Fig. 4). The direction of

y
( l+t>l,p+t>pl

0,

on, pl

FIG. 4

the extension of a brittle crack from the point 0 is governed by the following rule [23-25],
well confirmed experimentally: the crack is deflected in the direction of the maximum
tension stress ae, which is calculated in the neighborhood of the point 0 for the values
I, p+~p, when lim[.Jr(ae)max] = K c as r --+ O.

The general singular solution of the theory of elasticity for the semi-infinite cut can be
readily found by means of the Muskhelishvili's method [26]

ax+ay = ]r9f[(N+ iN 1) e-'iie:\ (r ~ Ro)

ay-i'txy = Jr[<N +iN1) cos ~ !(N - iNt>(eHe-eti~1
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Here N l(P, I) is a second stress intensity factor which is also determined only from the
solution of the problem as a whole (for the case of the local symmetry N 1 = 0), Ro is a
curvature radius on the left from the point 0 (Fig. 4). According to equation (5.1) the stress
(Je equals to

1 ~~ t~
(Je = 4Jr9l[3(N+iNt)e-21 +(N-3iNt)e I].

Hence the angle AB of the crack deflection can be found from the equation

N(sin ~AB+sin tAO) N 1(3 cos tAO+cos tAB).

(5.2)

(5.3)

The angle AO can be finite, if only the parameter P jumps or the crack-tip state at the
point 0 corresponds to an initial crack. For the case of the continuous variation of Pand I
the crack line will be smooth, and at the crack boundary the local symmetry condition
will be satisfied. We then divide the process of the crack development into a finite number
of steps, so that Ap and Al would correspond to each step and the crack extension would
be discontinuous. Performing a limiting process Ap -+ 0, AI ---+ 0, AB -+ 0 from equation
(5.3) we obtain

2(dN 1
) =N

dO l=const .
(5.4)

Here dN 1 is an increment N 1 at the point 0 which corresponds to the load increase by dp,
the crack being fixed (remember that N l(P, I) = 0).

Next, differentiate the identity N[p,/(p)] = K which is true at any moment according
to the Irwin's and local symmetry conditions.

dl
dp

oN liON
dp d/'

(5.5)

The equations (5.4-5.5) allow us to find the curvature radius of the smooth crack line at
any point

(5.6)

The applied finite-differences method is convenient for a numerical solution of prob­
lems of the curved crack development; the conditions N = K c and equations (5.4-5.6)
play there a part of the boundary one's at the crack border. It must be stressed that the
local symmetry condition alone would be insufficient for solving the problem.

6. THE STABILITY OF THE BRITTLE-CRACK GROWTH

Let an increase of an external load and the growth of the crack correspond to an
increase of the parameters p and I respectively. Then the parametric stability condition of
the crack extension dlldp > 0 takes the form (due to equation (5.5».

ON/ON 0op 01 < . (6.1)
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Ifa brittle crack is growing stably, the crack velocity I at the point 0 must evidently be
determined by the rate of the load increase p

I ON/ON-Pap 81'

For the case of an unstable crack the following condition is satisfied

ON/ONap 8/>0

so that after attaining a limiting state the crack goes over to the dynamic regime.

7. AN IDEAL ELASTIC-PLASTIC BODY. THE GRIFFITH PROBLEM

(6.2)

(6.3)

Consider a plate of an elastic-plastic material subjected to the Tresca-St. Venant yield
criterion; the plate has a straight through crack of length 21, which is located in the homo­
genous field of a monotonously increasing tensile stress U y = p normal to the crack line.
The edges ofthe crack are assumed to be load-free (Fig. 5). It was shown in paper [19J that

0-5

o 0-5 1-0 15

FIG. 5

for the values p, not too close to the tension yield-point Us, an exact solution ofthis problem
satisfies the Dugdale's hypothesis [27J, so that the plastic domains near crack-tips repre­
sent segments of length d along the crack-line extension

d
1

1tp
sec--l.

2us
(7.1)

(7.2)

It was found in the same work by virtue of the energy conservation law, that the crack
length is related to the load by the following first-order differential equation

df3 1 2A.(1n cos 13 + f3 tg f3)
dA. A.2(f3 sec2 f3 - tg f3)

(
13 = _1tp , A= 2U;I).

2us 1tEy*
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Figure 5 illustrates the field of the integral curves of the equation (7.2) in the interval
0< A- < 00,0 < P< n12. Continuous and dashed thin lines stand for stable and unstable
parts of the curves respectively. The curve determined by the equation

2A-(ln cos P+Ptg p) = 1 (7.3)

divides the whole domain of the variable variation into two parts: (1) a region where the
crack is growing stably from the initial state and (2) an unstable region where dP/dA < O.
At the beginning the crack extends thus monotonously with the load increase, then it
attains a maximum load at the point of the intersection with the curve equation (7.3), and
after that it goes over into the instability region. One sees readily that in the latter all the
integral curves tend asymptotically to the Griffith-Irwin--Orowan curve as A ...... 00

(7.4)

The curves equations (7.3-7.4) are plotted with thick lines in Fig. 5.
The mentioned peculiarities of the development of the Griffith crack in elastic-plastic

materials are borne out well by the experiments [2, 10].
The current state of the subject under consideration is presented in the paper [28] by

McClintock and Irwin.

8. AN IDEAL ELASTIC-PLASTIC BODY.
THE QUASI-BRITTLE FRACTURE CONCEPT

(i) In the work [19] it was also shown that the fracture process in plastic materials is
controlled by the true surface energy y; a dimension of the plastic zone near the crack-tip
and the value of the fracture energy y* are fully determined by y. Based upon the exact
solution of the elastic-plastic problem for a plate with a semi-infinite crack, and upon the
general approach to the crack propagation (see 1), the following relation was obtained

(8.1)

Here the body is assumed to satisfy the Tresca criterion up to fracture. Thereby, in the
energy conservation equation small magnitudes of the first order were taken into account.

Being well confirmed by the experiments [29, 5], the relation equation (8.1) allows us to
treat the quasi-brittle fracture concept and the adsorbous Rehbinder's effect (30] from a
single viewpoint. Equation (8.1) confirms the principal meaning of the true surface energy
in the strength problem and this fact is in essence a return to the original idea by Griffith.
It should be noted that an idea ofa relation between y* and y appears to be expressed first
by Gilman [31J; but because of a too rough calculation, his relationship does not agree
with experiments.

(ii) The Dugdale's hypothesis is valid [19J also for a crack in a plate of any shape and
under any boundary conditions, if a plate material follows Tresca's criterion and the
dimension of the plastic region is small as compared with a characteristic linear dimension
of the body (e.g., with a crack length) (Fig. 6). The plastic domain represents thereby a
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FIG. 6

segment of the length d along the crack-line prolongation

n2N 2

d=-42 '
Us

(8.2)

(8.3)

(8.4)

Here the stress intensity factor N is found from a solution of the purely elastic problem as
a whole; it determines the stress and strain distribution at a distance, which is large as
compared to d and is small as compared to the characteristic linear dimension of the body
(e.g., the curvature radius of the crack line at the point 0). The displacement v of the oppo­
site edges of the plastic line (y = 0,0 < x < d) equals to (19]

2Us [ Jd-J(d-X]]
v = ±nE 2J(d(d-x)]+xlnJd+J(d_x] .

One can calculate the fracture energy for this most typical and general case in the
following manner

y* = lim {~s f.d [v(x-As, N +AN)-v(x, N) dX}
&s-O tiS 0

4usd dN f.d ov
= Us' nE +usill 0 oN dx

nN2 7<3N 3 dN
= T+ 3u:E ill'

The first term in equation (8.4) equals the dissipation energy rate because of the crack
extension; this corresponds to the Griffith-Irwin-Orowan concept. The second term
equals the dissipation energy rate in the plastic region owing to the process of loading
and it is not connected with the crack growth. The following equation

Ey n2 N 3 dN
N 2 = -*--- -- (8.5)

n 3u: dl

serves as a boundary condition at the crack contour for the case when the crack has a
small but finite plastic head. Having determined the function N = N(p, I) from elastic
stress analysis one can find by virtue of equation (8.5) a relation between the crack-length I
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and load p parameters for any particular problem. Equation (8.5) can be written also in
the form which resembles the formulation of the yielding law with strain-hardening of an
elastic-plastic body

n1N 3 dN
dl = 3u;(K; _ N1f (8.6)

(8.7)(N = No as I = 10 ),

If Irwin's constant K c is independent of the crack velocity, we find after integrating
equation (8.6)

1- __ n2K;[Nl_N~ (I-N1/K;)]
10 - 6u1 K 2 +In (1- NljKl)

s 'C 0 C

The family of curves equation (8.7) can be obtained by displacing the curve of Fig. 6
along the x-axis.

In the case of plane strain similar relationship can be obtained.
It is clear that in elastic-plastic bodies a crack is growing, even if the stress intensity

factor is in the interval 0 < N < Kc ; the concept by Griffith-Irwin-Orowan is ofasymptotic
nature and holds, if the condition 6u;iii ~ n2 K; is satisfied (practically, if u;iii '> 3K;, on
the basis of Fig. 7).

9. A RIGID-PLASTIC BODY

Let a strip of an incompressible rigid-plastic material be stretched in y-direction with
velocity v (Fig. 7). The strip is assumed to contain a crack, which is perpendicular to the

p

p

FIG. 7

load-free boundary and is at the distance h from the latter. For the case of plane strain
under consideration the rigid-plastic strip yields if the force P is :

P = (2 +n)rsh. (9.1)
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The stress and velocity fields in the plastic region (the singular solution) are given by [32, 33]

n
as 181 <­

4

vy = 0

n
as in> 181 >­

4
ax = a-1:ssin20 r XY = rscos 2B

ay = a+rssin2B

a = (1+tn-2B)rs

Vr = v sin B Ve = v(cos 8 - .J2)

(9.2)

as n > IBI > in ax = 2rs

a y = r xy = 0

Vx = v vy = 2v,

Here rs is a shear yield-point. The general condition equation (1.3) at the crack-tip for the
solid model involved can be represented in the form [11]

f 3"/4 f3"/4 (OU ou )
2Rrs er/1cosBd(}-R arT+rr/1~ dB = y*

"/4 "/4 uX uX

Equation (9.2) leads to

ere = r~2 { Vdt Ur = sin B{ v dt

Ue = (cos B-.J2) f~ v dt (t is time)

(9.3)

(9.4)

and the edge of the crack takes a "box-like" shape (Fig. 7),
After substituting equation (9.4) into equation (9:3) the left-hand side of equation (9.3)

vanishes. Therefore, there can be no crack propagation in a rigid-plastic body.t

10. THE GROWTH OF CRACKS BY CYCLIC LOADS

The growth of cracks under the application of cyclic loads whose values are much less
than those of limiting ones is attributed to the qualitative peculiarities of the crack
propagation in elastic-plastic materials resulting from the foregoing analysis. At present
it is well established that the lifetime of materials is determined sometimes by the duration
of the fatigue crack growth under the cyclic load [34, 35]. The propagation of fatigue
cracks in plates can be investigated within the framework of the suggested theory by means
of the basic condition at the crack contour equation (8.5) or equation (8,6) which holds

t As it will be shown below this result is valid also for purely viscous bodies. Thus, in the bodies which have
no elastic properties a crack enlarges as a cavity.
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for any loading conditions and for bodies of any configuration provided that the plastic
region at the crack-tip is small compared to the crack length. For the case of Griffith
cracks one can omit the last restriction if the equation (7.2) is used.

Since we are not striving for generality and completeness, we shall consider now as
an illustrative example the case of a Griffith crack exposed to the cyclic load pet) (Fig. 8).

p

·:tlmL
o

l

Flo. 8

For simplicity we shall confine ourselves to the case of the crack whose propagation
occurs in the range of stability (13, A) which is not too close to the boundary layer near the
curve equation (7.3), so that the curves f3(A) are nearly parallel to Y-axis in this region, as
evidenced by Fig. 5.

Developing the right-hand side of the equation (7.2) in the neighborhood of the point
13 = 0, A AI we shall find

Hence the dimensionless length of the crack increases during one loading cycle by

AA = !f3:Ai + O(f3~)

(10.1)

(10.2)

(10.3)

Here 13m is the maximum dimensionless tension load during one cycle (the residual stresses
are neglected). Passing from the finite differences to differentials and denoting the number
of cycles as n we get from this the rate of growth of the crack

dl l n3p:li
dn 48O';Ey*

When d ~ 1 it is reasonable to utilise the maximum stress intensity factor Nm; for the
present case it is equal to

Then equation (10.3) can be written as

dl l n3N~
-= 2 •
dn 12O's Ey*

Notice that it can be also derived immediately from equation (8.6).

(lOA)

(10.5)
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The relationships equation (10.3) and equation (10.5) are in good agreement with
experiments in the region not too close to the boundary layer [see Figs. 5 and 8, cf. e.g. data
in (36-41»).

For lack of space we shall omit here such important issues, as the effects of boundaries,
of the way of loading, of boundary layer phenomena, of residual stresses.

Notice only that the suggested approach does not describe nonpropagating fatigue
cracks and the existence of fatigue strength. These phenomena are evidently connected
with the microinhomogeneity and grain-structure of real materials omitted in the theory.
To take into account these effects in the framework of our theory one must formulate the
condition of the crack nonpropagation. The latter is easily obtained for the cracks which
obey the condition d ~ 1. Indeed, on the basis of general considerations of invariance (see
introduction) the nonpropagation condition for these fatigue cracks is to be as follows

(10.6)

where K y is a material constant (K y < K c)'

For the case of the Griffith problem the condition equation (10.6) by means ofequation
(lOA) is written as

(10.7)

For not too small values 11 the condition equation (10.7) agrees quite satisfactorily
with the experimental data by Frost [42,43) (he noted himself an empirical condition
p~11 < C; the discrepancy with equation (10.7) is accounted for the fact, that the inequality
d ~ 1did not hold so strictly).

For the general case the rate of crack growth by any cyclic loads can be obtained in
the following form

(10.8)

(11.1 )

b = 1 if N min > 0 and b = 0 if Nmin < O.

Here fJ is a material constant which is different in the cases of plane strain and plane stress,
N max and N min are maximum and minimum values of N during a cycle, respectively.

ll. VISCOELASTIC BODIES

Consider a linear viscoelastic body having quasistatic cracks and being in plane stress.
The process is assumed to be isothermal. The stress and strain relationship can be repre­
sented for this case in the most general form [44)

B = E- 10" - E- 1vO" B = E- 10" - E- 1vO"
x x Y Y Y x

Bxy = E- 1(1+v)'rxy Bz = -E- 1v(O"x+ n y).

Here E - 1 and v are linear commutative time-operators of the following form:

vf = {vo(t-'r)f('r)d'r. (11.2)



828 G. P. CHEREPANOV

The functions Eo(x) and vo(x) belong to the class of the generalized functions. It is con­
venient for the practical purpose to use the Rabotnov's kernels [45]. A singular solution
in the case under consideration coincides with an elastic one [11J, but the stress intensity
factor N must be treated as a function of time.

Calculate the fracture energy by means of the general condition equation (1.5) and
the singular solution

(11.3)

(11.4)

and

2y* = n { NE-1(1-v)Ndt+iNE-1(3+v)N.

Here t is the time from the beginning of the loading to the initial moment of the crack
growth. As the montonously growing cracks are considered here, t tends to zero. Then,
passing to the limit for t -+ 0 in the formula (11.4) we obtain the following equation

Ey* = nN2 (11.5)

This is the known Irwin's condition for the brittle cracks.
Thus, a crack in a body will behave as a brittle one, if y* is a material constant and

the body is linear viscoelastic up to the fracture. As it is readily seen from equation (11.1)
and equation (11.2), the stress and strain distribution near the end of a monotonously
growing crack in a viscoelastic body will be elastic.

The equation (11.4) will be of independent interest if the dimension of the field of plastic
(or high-elastic) deformations near the crack-tip is larger than that of the "elastic kernel",
so that the linear dimension R of the "fine" structure of the crack-tip is large compared to
the latter.

12. FLUCTUATION CRACKS

Consider briefly another possible mechanism of the crack-growth kinetics connected
with the fracture of the plastic (or high-elastic) head at the crack-tip as a result of heat
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fluctuations. For this case the corresponding condition at the crack-tip is easily derived
from the linear postulate of irreversible thermodynamics which can be written here in
the form equation (2.6). Indeed, substituting equation (2.6) into equation (1.3) and assuming
the material to be a linearly elastic one, one finds

and

f
+" T

R _" (pUcos8-A.)d8=2y+;1 (12.1)

(12.2)2rcN
2

= 2y+ T I.E 0(

Hence, ignoring a reversible part of fracture energy, we come to the following formula

dl

dt
( = 2rcO(.

ET
(12.3)

(12.6)

Here a constant' depends only on temperature.
For the case of the Griffith problem the formula equation (12.3) becomes

dl _ 11" 21 (12.4)
dt - 1:'>P

and for p = const. during the whole process we find

10 exP(!(p2t). (12.5)

The exponential expression equation (12.5) agrees well with the results of works [46-47],
obtained with the help of other approaches.

However, the following equation leads to better agreement with experimental data on
long-time strength:

dl ~ (j2 N - (j3
dt U1 exp T

«(jl' (j2' (j3 are material constants). It can be obtained from the fluctuation theory and the
modified concept of Neuber.

CONCLUSION

On the basis of the exact mathematical approach, and the subsequent application of
singular solutions, different possible mechanisms of the energy absorption at the crack-tip,
due to the plastic (7HIO) and viscous (12) dissipation in the plastic head and due to the
dissipation in the bulk of the material (11), were considered in this paper. It appears that
the combination of these particular mechanisms to a single one will make it possible to
work out the most flexible and universal concept.

The author gratefully acknowledges the permanent attention and support of this work
to Prof. Y. N. Rabotnov and Prof. L. A. Galin. The many suggestions provided by Prof.
V. V. Bolotin were very helpful in preparation of this paper.
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AficTpaKT-npeWlaraeMali pa60Ta nOCBlImeHa npHJlOlKeHHIO OCHOBHblX HAeit H MeTOAoB MexaHHKH

COJIOWHbIX CpeA K npoueccaM pacnpOCTpaHeHHlI TpemHH. Pa3BHTHe TpemHHbl onpeAeJllleTCli AOnOJlHHTe·

JlbHblM YCJlOBHeM Bee KOHl1e. B CB1I3H C nHM CTaBHTCli JaAa'ia 0 "TOHKOit" CTpyKType KOHua TpemHHbl.

WcnOJlb3Yll JaKOH coxpaHeHHlI 3HeprHH H cjlH3H'iecKoe npeACTaBJleHHe 06 3HeprHH pa3pyweHHlI, HaXOAHTCli

06mHit BHA AOnOJlHHTeJlbHOrO YCJlOBHR B npOH3BOJlbHoit CnJlOWHoit cpeAe. KpaTKo paCCMaTpHBaIOTCR

AHHaMH'iecKHe TpeWHHbl B ynpyroM TeJle H CTaTH'iecKHe TpemHHbI B .ynpyro-nJlaCTH'ieCKOM H lKecTKO­

nJlaCTH'ieCKOM TeJlax. BecbMa KpaTKO paCCMOTpeH Bonpoc 0 pa3BHTHH KBa3HCTaTH'iecKHX TpemHH B

AHccHnHpylOmHx B1I3Ko-ynpyrHx cpeAax. 06mHit nOAXOA npHMeHlIeTCR TaKlKe K YCTaJlOCTHblM H cjlJlIOK­

Tyal1HOHHblM TpemHHaM.


